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Previous papers in this series of statistical mechanics of neocortical interactions (SMNI) have detailed
a development from the relatively microscopic scales of neurons up to the macroscopic scales as record-
ed by electroencephalography (EEG), requiring an intermediate mesocolumnar scale to be developed at
the scale of minicolumns (= 10? neurons) and macrocolumns ( =~ 10° neurons). Opportunity was taken to
view SMNI as sets of statistical constraints, not necessarily describing specific synaptic or neuronal
mechanisms, on neuronal interactions, on some aspects of short-term memory (STM), e.g., its capacity,
stability, and duration. A recently developed c-language code, PATHINT, provides a non-Monte Carlo
technique for calculating the dynamic evolution of arbitrary-dimension (subject to computer resources)
nonlinear Lagrangians, such as derived for the two-variable SMNI problem. Here, PATHINT is used to
explicitly detail the evolution of the SMNI constraints on STM.

PACS number(s): 87.10.+e, 05.40.+j, 02.50.—r1, 02.70.—c

I. INTRODUCTION

A. SMNI modeling

To learn more about complex systems, functional mod-
els are inevitably formed to represent huge sets of data.
In nature, complex systems often present different phe-
nomena at different scales. In this context, a plausible
model of statistical mechanics of neocortical interactions
(SMNI) has been developed over the past decade [1-16].
Some recent experimental work further justifies the
SMNI mathematical development of the microscopic
scale into mesocolumns [17]. The focus of SMNI is to ex-
plain phenomena at spatial scales of millimeters to cen-
timeters, much larger than spatial scales of neuronal in-
teractions. In this paper, to place all calculations in this
context, it is helpful to consider the utility of SMNI as
directed towards phenomena such as measured by elec-
troencephalography (EEG). For example, fitted SMNI
functional forms to EEG data may help to explicate some
underlying biophysical mechanisms responsible for the
normal and abnormal behavioral states being investigated
[13,15].

However, like many nonlinear nonequilibrium systems,
in the course of the SMNI development from the relative-
ly microscopic scales of neurons up to the macroscopic
scales of EEG, an intermediate mesocolumnar scale had
to be developed at the scale of minicolumns ( ~ 10? neu-
rons) and macrocolumns ( = 10° neurons). Then, oppor-
tunity was taken to view SMNI as sets of statistical con-
straints, not necessarily describing specific synaptic or
neuronal mechanisms, on neuronal interactions, e.g., on
some aspects of short-term memory (STM).

A quite different approach to neuronal systems is taken
by artificial neural networks (ANN). Both ANN and
SMNI structures are represented in terms of units with
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algebraic properties greatly simplifying specific realistic
neuronal components [18]. Of course, there is a clear log-
ical difference between considering a small ensemble of
simple ANN units (each unit representing an “average”
neuron) to study the properties of small ensembles of neu-
rons, versus considering distributions of interactions be-
tween model neurons to develop ensembles of units (each
unit representing a column of neurons) developed by
SMNI to study properties of large ensembles of columns.
Only the latter has a chance for any statistical
justification. Unlike SMNI, ANN models may yield in-
sights into specific mechanisms of learning, memory, and
retrieval, and information processing among small en-
sembles of model neurons, etc. However, consider that
there are several million neurons located under a cm?®
area of neocortical surface. Current estimates are that 1
to several percent of coherent neurcnal firings may ac-
count for the amplitudes of electric potential measured
on the scalp. This translates into measuring firings of
hundreds of thousands of neurons as contributing to ac-
tivity measured under a typical clectrode. Even when
EEG recordings are made directly on the brain surface,
tens of thousands of neurons are contributing to activity
measured under electrodes. ANN models cannot ap-
proach the order of magnitude of neurons participating
in phenomena at the scale of EEG, just as neither ANN
nor SMNI can detail relatively smaller scale activity at
the membrane or atomic levels. Attempts by ANN to do
so likely would require statistical interpretations such as
are made by SMNI; otherwise the output of the models
would just replace the data collected from huge numbers
of neuronal firings—a regression from 20th century sci-
ence back to empiricism. Thus, as is the case in many
physical sciences, the SMNI approach is to perform prior
statistical analyses up to the scale of interest (here at
EEG scales). The ANN approach must perform statisti-
cal analyses after processing its units.

While ANN models use simplified algebraic structures
to represent real neurons, SMNI models develop the
statistics of large numbers of realistic neurons represent-
ing huge numbers of synaptic interactions—there are 10*
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to 10° synapses per neuron. Furthermore, unlike most
ANN approaches, SMNI accepts constraints on all its
macrocolumnar averaged parameters to be taken from
experimentally determined ranges of synaptic and neu-
ronal interactions; there are no unphysical parameters.
The stochastic and nonlinear nature of SMNI develop-
ment is directly derived from experimentally observed
synaptic interactions and from the mathematical develop-
ment of observed minicolumns and macrocolumns of
neurons. SMNI has required the use of mathematical
physics techniques first published in the late 1970s in the
context of developing an approach to multivariate non-
linear nonequilibrium statistical mechanics.

B. Outline of paper

Section IT gives a short description of SMNI as it has
been focused to EEG analyses [13] and generic algo-
rithms for nonlinear systems [14]. Section III gives a
short description of that part of the SMNI algebra of the
mesoscopic scale relevant to this paper, where
confirmation of experimental data was obtained with sys-
tematics of STM phenomena. Section IV presents a
path-integral algorithm, PATHINT, applied to SMNI, with
detailed calculations of the evolution of STM. Section V
concludes with a brief outlook to future work that now
can be reasonably accomplished given the PATHINT algo-
rithm together with the adaptive simulated annealing
(ASA) code [19], previously called very fast simulated
reannealing (VFSR) [20], which was used to fit EEG data
[13].

II. OUTLINE OF SMNI

A. Top-down versus bottom-up

In order to detail a model of EEG phenomena, it is
useful to seek guidance from “top-down” models; e.g.,
the nonlinear string model representing nonlinear dipoles
of neuronal columnar activity [21]. In order to construct
a more detailed ‘““bottom-up”’ model that can give reason-
able algebraic functions with physical parameters to be
fitted by data, a wealth of empirical data and modern
techniques of mathematical physics across multiple scales
of neocortical activity are developed up to the scale de-
scribed by the top-down model. At each of these scales,
reasonable procedures and submodels for climbing from
scale to scale are derived. Each of these submodels was
tested against some experimental data to see if the theory
was on the right track. For example, at the mesoscopic
scale the consistency of SMNI was checked with known
aspects of visual and auditory STM; e.g., the 42 and
7£2 STM capacity rules, respectively, the detailed dura-
tion and stability of such states, and the primacy versus
recency rule of error rates of learned items in STM [4,6].
At the macroscopic scale, SMNI consistency was
checked with most stable frequencies being in the high a
to low B range, and the velocities of propagation of infor-
mation across minicolumns being consistent with other
experimental data [3,5]. SMNI has demonstrated that
the currently accepted dipole EEG model can be derived
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as the Euler-Lagrange equations of an electric-potential
Lagrangian, describing the trajectories of most likely
states, making it possible to return to the top-down EEG
model, but now with a derivation and detailed structure
given to the dipole model [12,13]. The SMNI approach,
of fitting scaled nonlinear stochastic columnar activity
directly to EEG data, goes beyond the dipole model,
making it possible to extract more signal from noise.

The theoretical and experimental importance of
specific scaling of interactions in the neocortex has been
quantitatively demonstrated: It has been shown that the
explicit algebraic form of the probability distribution for
mesoscopic columnar interactions is driven by a non-
linear threshold factor of the same form taken to describe
microscopic neuronal interactions, in terms of electrical-
chemical synaptic and neuronal parameters all lying
within their experimentally observed ranges; these
threshold factors largely determine the nature of the
drifts and diffusions of the system. This mesoscopic
probability distribution has successfully described STM
phenomena and, when used as a basis to derive the most
likely trajectories using the Euler-Lagrange variational
equations, it also has described the systematics of EEG
phenomena. More recently, the mesoscopic form of the
full probability distribution has been taken more serious-
ly for macroscopic interactions, deriving macroscopic
drifts and diffusions linearly related to sums of their (non-
linear) mesoscopic counterparts, scaling its variables to
describe interactions among regional interactions corre-
lated with observed electrical activities measured by elec-
trode recordings of scalp EEG, with apparent success
[13]. These results give strong quantitative support for
an accurate intuitive picture, portraying neocortical in-
teractions as having common algebraic or physics mecha-
nisms that scale across quite disparate spatial scales and
functional or behavioral phenomena, i.e., describing in-
teractions among neurons, columns of neurons, and re-
gional masses of neurons.

B. Generic application

The SMNI methodology also defines an algorithm to
construct a mesoscopic neural network (MNN), based on
realistic neocortical processes and parameters, to record
patterns of brain activity and to compute the evolution of
this system [14]. MNN makes it possible to add a finer
minicolumnar scale to the explicit SMNI development at
the mesoscopic and regional scales.

Furthermore, this new algorithm is quite generic, and
can be used to similarly process information in other sys-
tems, especially, but not limited to, those amenable to
modeling by mathematical physics techniques alterna-
tively described by path-integral Lagrangians, Fokker-
Planck equations, or Langevin rate equations. This
methodology is made possible and practical by a
confluence of techniques drawn from SMNI itself,
modern methods of functional stochastic calculus
defining nonlinear Lagrangians [22], AsA [19,20], and
parallel-processing computation.

MNN generalizes the ASA code [20]. When applied to
systems like SMNI, AsA fits short-time probability distri-
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butions to observed data, using a maximum likelihood
technique on the “effective” Lagrangian (including the
exponential prefactor). This algorithm has been
developed to fit observed data to a large class of theoreti-
cal cost function over a D-dimensional parameter space,
adapting for varying sensitivities of parameters during
the fit. The annealing schedule for the “temperatures”
(artificial fluctuation parameters) 7; decrease exponen-
tially in “time” (cycle number of iterative process) k, i.e.,
T, = T,qexp( —c;k /D).

Heuristic arguments have been developed to demon-
strate that this algorithm is faster than the fast Cauchy
annealing [23], T;=T,/k, and much faster than
Boltzmann annealing [24], T;=T,/Ink. To be more
specific, the kth estimate of parameter o/,

a’,'(E[A,-,B,»] , (1)

is used with the random variable x' to get the (k +1)th
estimate,

af 41 =ap+x(B;—4,),

x'e[—1,1]. )
The generating function is defined as
D 1 D
erO= I S e+ = s>
T, =T,qexp(—c;k'/P) . 3)
The cost function C used here is defined by
C=Ldt+In(27dt)—In(g) , (4)

in terms of the Lagrangian L and the determinant of the
metric g.

As discussed in the Conclusion, ASA is a natural
partner with PATHINT for fitting and evolving multivari-
ate nonlinear Gaussian-Markovian systems such as de-
scribed by SMNI. ASA has been extremely useful to
many researchers worldwide in many other kinds of ap-
plications [19].

III. SMNI MODEL OF STM

A. Basic assumptions

The most detailed and dramatic application of the
theory outlined here is to predict stochastic bounds for
the phenomena of human STM capacity during focused
selective attention [4,6,25-27], transpiring on the order of
tenths of a second to seconds, limited to the retention of
742 items [28]. This is true even for apparently excep-
tional memory performers who, while they may be cap-
able of more efficient encoding and retrieval of STM, and
while they may be more efficient in ‘“‘chunking” larger
patterns of information into single items, nevertheless are
limited to a STM capacity of 7+2 items [29]. Mecha-
nisms for various STM phenomena have been proposed
across many spatial scales [30]. This “rule” is verified for
acoustical STM, but for visual or semantic STM, which
typically require longer times for rehearsal in an hy-
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pothesized articulatory loop of individual items, STM
capacity appears to be limited to 2—4 [31]. Another in-
teresting phenomenon of STM capacity explained by
SMNI is the primacy versus recency effect in STM serial
processing, wherein first-learned items are recalled most
error-free, with last-learned items still more error-free
than those in the middle [32].

The basic assumption being made is that a pattern of
neuronal firing that persists for many 7 cycles is a candi-
date to store the “memory” of activity that gave rise to
this pattern. If several firing patterns can simultaneously
exist, then there is the capability of storing several
memories. The short-time probability distribution de-
rived for the neocortex is the primary tool to seek such
firing patterns. Since this distribution is exponentially
sensitive to (minus) the Lagrangian function L, some-
times it is more convenient to deal directly with L,
whereby its minima specify the most likely states that can
be sustained at a given time. Then, several important
features of these patterned states can be investigated, as is
done for other physical systems [33]; e.g., the evolution of
these states, the “time of first passage” to jump from one
state to another state, hysteresis between states that have
different depths (values of the Lagrangian at these local
minima), the stability of each state under external forces,
etc.

B. SMNI mesoscopic propagator

As is found for most nonequilibrium systems, e.g., for
lasers, chemical systems, fluids, and ecological systems
[33,34], a mesoscopic scale is required to formulate the
statistical mechanics of the microscopic system, from
which the macroscopic scale can be developed [33]. The
neocortex is particularly interesting in this context in
that a clear scale for the mesoscopic system exists, both
anatomically (structurally) and physiologically (function-
ally). “Minicolumns” of about N =110 neurons (about
220 in the visual cortex) comprise modular units vertical-
ly oriented relative to the warped and convoluted neo-
cortical surface throughout most, if not all, regions of the
neocortex [35-40]. Clusters of about 100 neurons have
been deduced to be reasonable from other considerations
as well [41]. Since the short-ranged interactions between
neurons take place within ~1 mm, which is the extent of
a “macrocolumn” comprising ~10° minicolumns of
N*=10° neurons, and since macrocolumns also exhibit
rather specific information-processing features, this
theory has retained the divergence-convergence of
macrocolumn-minicolumn, efferent-afferent interactions
by considering domains of minicolumns as having similar
synaptic interactions within the extent of a macrocolumn.
This macrocolumnar-averaged minicolumn is designated
in this theory as a “mesocolumn.”

This being the observed situation, it is interesting that
N =10? is just the right order of magnitude to permit a
formal analysis using methods of mathematical physics
just developed for statistical systems in the late 1970s
[22,42]. N is small enough to permit nearest-neighbor in-
teractions to be formulated, such that interactions be-
tween mesocolumns are small enough to be considered
gradient perturbations on otherwise independent meso-
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columnar firing states. This is consistent with rather con-
tinuous spatial gradient interactions observed among
columns [43], and with the basic hypothesis that nonran-
dom differentiation of properties among broadly tuned in-
dividual neurons coexists with functional columnar aver-
ages representing superpositions of patterned information
[44] This is a definite mathematical convenience; other-
wise, a macrocolumn of ~ 10° minicolumns would have
to be described by a system of minicolumns with up to
16th-order next-nearest neighbors. (Consider 1000 min-
icolumns spread out in a two-dimensional grid about 33
by 33 minicolumns, and focus attention on the center
minicolumn.) The MNN algorithm described above can
replace this nearest-neighbor approximation, introducing
an additional finer scale of direct minicolumnar interac-
tions.

Also, N is large enough to permit the derived binomial
distribution of afferent minicolumnar firing states to be
well approximated by a Gaussian distribution, a luxury
not afforded an “average” neuron, even in this otherwise
similar physical context. Finally, mesocolumnar interac-
tions are observed to take place via one to several relays
of neuronal interactions, so that their time scales are
similarly 7=~5-10 msec. Even after statistically shaping
the microscopic system, the parameters of the mesoscop-
ic system are still macrocolumnar-averaged synaptic pa-
rameters, i.e., reflecting the statistics of millions of
synapses with regard to their chemical and electrical
properties. Explicit laminar circuitry, and more compli-
cated synaptic interactions, e.g., dependent on all com-
binations of presynaptic and postsynaptic firings, can be
included without loss of detailed analysis [3]. The
mathematical development of mesocolumns establishes a
mesoscopic Lagrangian L, which may be considered as a
“cost function” with variables M€, M G and VM, and
with parameters defined by the macrocolumnar-averaged
chemical-electrical entities developed below.

The Einstein summation convention is used for com-
pactness, whereby any index appearing more than once
among factors in any term is assumed to be summed
over, unless otherwise indicated by vertical bars, e.g.,
|G|. The mesoscopic probability distribution P is given
by the product of microscopic probability distributions
Po,» constrained such that the aggregate meso-

scopic excitatory firings MEf=3 JEE o, and the aggre-
gate mesoscopic inhibitory firings M= . jer0;

P= I POIMC(r;t+7)M%r;1)]
G

=38 [ S aj—ME(r;t-H')]

g; JjEE

5 [Eaj—M

JEI

N
’(r;t+1-)] IIr..
j J
—N7L9), (5)

~ [ (27rrg 96)~1/2exp(
G

where the final form is derived using the fact that
N > 100. G represents contributions from both E and I
sources. This defines the Lagrangian, in terms of its
first-moment drifts g, its second-moment diffusion ma-
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trix g%, and its potential ¥, all of which depend sensi-
tively on threshold factors FC,
exp(—N7L),
L=02N)""M%—g )gse(M ¥ —g%)

+MSI;/2NT)—V',

=3 Vs (pVM)
G

~(21TT) 1/2 172

g¢=—7"(MC%+NCtanhFO),
899 =(gse) ' =88 77 'NCsech?FC ,

g =det(ggg) »
(Ve—alflwlf NG —1 4l [FMY)

(Wl P+ (2 Nalf NS+ 1 alfIM )2

G=

“G'=1Ag' +B¢ , (6)

where A& and BE are macrocolumnar-averaged inter-
neuronal synaptic efficacies, vS and ¢¢ are averaged
means and variances of contributions to neuronal electric
polarizations, and nearest-neighbor interactions V' are
detailed in other SMNI papers [2,4]. M¢ and N¢ in F°
are afferent macrocolumnar firings, scaled to efferent
minicolumnar firings by N/N*~10"3, where N* is the
number of neurons in a macrocolumn. Similarly, Ag'
and B have been scaled by N* /N ~10° to keep F€ in-
variant. This scaling is for convenience only. For the
neocortex, due to chemical independence of excitatory
and inhibitory interactions, the diffusion matrix g ¢
diagonal.

C. Previous SMNI treatment of STM

1. STM capacity

Three cases of neuronal firings were considered [4].
Since STM duration is still long relative to 7, stationary
solutions of L, derived from L in Eq. (6), were investigat-
ed to determine how many stable minima, (( M ¢)), may
simultaneously exist within this duration. Also, individu-
al mesocolumns were studied. I.e., take the uniform limit
of M 9=0=VM . Although the M =0 limit should
only be taken for the midpoint-discretized Lagrangian
Ly, this is a small difference here [4]. Section IV below
will use these results as a zeroth order basis for more de-
tailed path-integral calculations.

A model of dominant inhibition describes how min-
icolumnar firings are suppressed by their neighboring
minicolumns. For example, this could be effected by de-
veloping nearest-neighbor (NN) mesocolumnar interac-
tions [3], but the averaged effect is established by inhibi-
tory mesocolumns (IC) by setting Ai=AF=24F
=0.01N*/N. Since there appears to be relatively little
I-1 connectivity, set A/=0.0001N*/N. The backgrovnd
synaptic noise is taken to be BF=BLI=20F%
=10B;=0.002N*/N. As minicolumns are observed to
have ~ 110 neurons (the visual cortex appears to have ap-
proximately twice this density) [40], and as there appear
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to be a predominance of E over I neurons [45], here take
NE=80 and N'=30. Use N*/N=10%, J;=0 (absence
of long-ranged interactions), and V% v&, and ¢¢. as es-
timated previously, i.e., ¥9=10 mV, [v&]|=0.1 mV,
$#%.=0.1 mV. The “threshold factors” F for this IC
model are then

FE.— 0.5M '—0.25M £+3.0
€ 120 1M 140.05M £+49.80)1/2

pl —__ 0.005M '—0.5M *—45.8 o
€ 2120.001M 1+0. 1M E+11.2)172

In the prepoint-discretized deterministic limit, the
threshold factors determine when and how smoothly the
“step functions” tanhF& in g%t¢) change M%t) to
MC%t+6). Fl. will cause afferent M’ to fire for most of
its values, as M '~ — N'tanhF{. will be positive for most
values of M ¢ in Fl, which is already weighted heavily
with a term —45.8. Looking at FL, it is seen that the
relatively high positive values of efferent M ! require at
least moderate values of positive efferent M £ to cause
firings of afferent M £.

It is discovered that more minima of L are created, or
“restored,” if the numerator of F¢ contains terms only in
M¢, tending to center L about M °=0. Of course, any
mechanism producing more as well as deeper minima is
statistically favored. However, this particular “center-
ing” mechanism has plausible support: M%(t+7)=0 is
the state of afferent firing with highest statistical weight.
I.e., there are more combinations of neuronal firings,
o;=*%1, yieGlding this state than any other M %(t+7);
e.g, ~2NTVAZNC)T1/2 relative to the states
MP=+NS Similarly, M*%t) is the state of efferent
firing with highest statistical weight. Therefore, it is nat-
ural to explore mechanisms that favor common highly
weighted efferent and afferent firings in ranges consistent
with favorable firing threshold factors F°~0.

The centering effect of the IC model of dominant inhi-
bition, labeled here as the IC’ model, is quite easy for the
neocortex to accommodate. For example, this can be ac-
complished simply by readjusting the synaptic back-
ground noise from B to B.C,

Ve—(LAf+BFwfiN~
vIN©

for both G=F and G=1. This is modified straightfor-
wardly when regional influences from long-ranged firings
M*E are included [13]. In general, BS and Bf(and possi-
bly 4 g and A4 IG due to actions of neuromodulators, and
Jg or M*E constraints from long-ranged fibers) are avail-
able to force the constant in the numerator to zero, giv-
ing an extra degree(s) of freedom to this mechanism. (If
B;F would be negative, this leads to unphysical results in
the square-root denominator of FS. Here, in all examples
where this occurs, it is possible to instead find positive
B;S to appropriately shift the numerator of F¢.) In this
context, it is experimentally observed that the synaptic
sensitivity of neurons engaged in selective attention is al-
tered, presumably by the influence of chemical neuromo-
dulators on postsynaptic neurons [46].

LAZvENE

Bif= , (8)
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By this centering mechanism, B;f=1.38 and
B;'=15.3, and F& is transformed to F.,

FE. = 0.5M '—0.25M *
I FV20.1M 1+0.05M £+10.4)!72
0.005M 1—0.5M E

Fl.= - -z . 9)
1 2172(0.001M T+0. 1M E+20.4)1 /2

Aside from the enforced vanishing of the constant terms
in the numerators of F$., the only other change in F.
relative to F& is to moderately affect the constant terms
in the denominators. This increases the number of mini-
ma of 7L to 4. The two minima clustered close to the
origin are no longer discernible for 7L ;. >0.03.

The other “extreme” of normal neocortical firings is a
model of dominant excitation, effected by establishing ex-
citatory mesocolumns (EC) by using the same parameters
(BS,v&,08.,4}} as in the IC model, but setting
AE=241L=2A4F=0.01N*/N. This yields

FE — 0.25M '—0.5M £—24.5
FC O 212(0.05M 1+0.10M E+12.3)!72
;L 0.005M '—0.25M £—25.8

Fee= 0. 00101 1 +0.058 Fr 7002 O
The negative constant in the numerator of Ff inhibits
afferent M ! firings. Although there is also a negative
constant in the numerator of FE., the increased
coefficient of M £ (relative to its corresponding value in
FE), and the fact that M £ can range up to NE=80,
readily permits excitatory firings throughout most of the
range of M £, This permits three minima.

Applying the centering mechanism to EC, B;£=10.2
and B;'=8.62. The net effect in Fg., in addition to re-
moving the constant terms in the numerators of F&, is to
change the constant terms in the denominators: 12.3 in
FE. is changed to 17.2 in FE., and 7.24 in Fl¢ is
changed to 12.4 in FL.. Now six prominent minima are
possible along a line through M =0, and two others are
at M ==+N° Each pair of minima above and below the
M '=0 axis merge into single minima for 7Lgc >0.02,
and these lose resolution for 7L g >0.03.

Now it is natural to examine a balanced case inter-
mediate between IC and EC, labeled BC. This is accom-
plished by changing 4= Al = 4F=0.005N*/N. This
yields

0.25M '—0.25M £—4.50
7172(0.050M £+0.050M '+8.30)1/%

FL = 0.005M '—0.25M £—25.8
BC 172(0.001M '+0.050M E+7.24)172

Three minima are possible, on the boundaries of M ¢
space.

Applying the centering mechanism to BC, B;F=0.438
and B;'=8.62. The net effect in F§., in addition to re-
moving the constant terms in the numerators of F§c, is to
change the constant terms in the denominators: 8.30 in
FE. is changed to 7.40 in FE., and 7.24 in Fj. is
changed to 12.4 in F§.. Now ten minima are possible.

E _
Fge=

(1n
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The nine minima along the diagonal line lose resolution
for TLp > 0.01 above M /=0 and for 7Lp > 0.02 below
M=o.

The effects of using the full Feynman Lagrangian Ly
were considered, including all the Riemannian and other
nonlinear corrections discussed in previous SMNI papers.
The net effect is to slightly raise the threshold at which
minima dissipate, to about 7L pc = 0.03, which is relevant
for the duration of STM, discussed subsequently. How-
ever, the minima structure is essentially the same.

If N* is scaled larger or smaller, this effectively scales
A& =AL°N*/N and BE =B&SN*/N, disturbing the
relatively sensitive balance that permits a few percent of
efferent firings to affect their afferents. Then, the number
of possible minima is typically reduced to one or two. If
N is scaled larger or smaller, the number of minima is al-
tered and the duration of STM is affected, as discussed
subsequently. However, for N still in the range of a few
hundred, the number of possible minima is not severely
reduced. The case N =220, e.g., the visual cortex was
considered: For model BC’, the number of prominent
minima found is 11, but they form clusters, with higher
peaks between clusters than between minima within a
cluster. The larger N sharpens the minima and therefore
the resolution of visual information processing.

The sharpness of the tanhF¢ step-function contribu-
tion to the mean firing is sensitive to a factor of N!/2 in
FC Additionally, the strength of coupling between
mesocolumns scales as N3/2. Thus the neuronal size of
mesocolumns directly affects the breadth and depth of
the information processing capability of the neocortex. It
is interesting to note that the human visual cortex, which
may be assumed to require the finest tuning in the neo-
cortex, is unique in having twice the number of neurons
per minicolumn than other regions of the neocortex [40].

2. STM stability and duration

The calculation of stability and time of duration in
most likely states of firing starts by using the differential-
equation Hamiltonian formulation of the path-integral
Lagrangian, called the Fokker-Planck equation. The
Fokker-Planck equation for the region Q is

P _
at ~Q
(++)g=a(---)/aMC . (12)

U [ d*[L(g%CP) 6—(g°P) g +NV'P],

The true Fokker-Planck equation is actually more gen-
eral, e.g., if long-ranged spatial structures are included,
where the independent variables MY are fields which
themselves may depend on space and time coordinates.
The above equation is derived in the nearest-neighbor ap-
proximation from the general equation using functional
derivatives [4],

(- )/dMC8(---)/6MC ,

8- )/BMO=(--)=Vi(+ )y etVil ) e

(13)
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where we have used the compacted notation introduced
previously [4].

An estimate of a stationary solution Py, to the
Fokker-Planck differential equation for the probability
distribution P of M€ firings for an uncoupled meso-
column, i.e., ¥'=0, is given by the stationary limit of the
short-time propagator,

Py, sttatg l/Zexp( - CNTL.-) »

g=det(gGG')_'Edet(g(;gr)’—‘gEEg" ’ (14)

where N, and C are constant factors. An estimate of
the approximation made is estimated by seeking values of
constants C, such that the stationary Fokker-Planck
equation is satisfied exactly. Contour plots of C versus
M S demonstrate that there exists real positive C which
may only range from ~107! to ~1, for which there ex-
ists unbroken contours of C which pass through or at
least border the line of minima [6]. At each point M ©,
this leaves a quadratic equation for C to be solved. Drop-
ping the g /2 factor results in C not being real throughout
the domain of M €.

Thus we have defined an approximate solution with po-
tential N’L= [ A dM, drift 4, and diffusion N /7. Sta-
bility of transient solutions, defined for §M G about a sta-
tionary state by

M = — A G8MC=—N’L 60M€ , (15)

is therefore equivalent to (( M )) being a minimum of L.

Since the minima of the Lagrangian lie deep in a valley
along a line, a parabolic trough, the time for first passage,
t,p» is estimated in analogy to a one-dimensional system
as [47]

tyy =7N *[|L 66 (AMN I L e (KMN,)] 7172
Xexp{CNT[L((MN,)—L(KMN,)]}, (16)

where ((M )), is the minimum at the valley of L in ques-
tion, and ((M )), is the maximum at a peak separating
two minima. These equations are reasonable but crude
estimates, and future numerical work must be done to de-
tail the extent of their validity. Section IV begins this
program by transforming to axes that can take advantage
of this parabolic trough.

The exponential factor can be quite large in some in-
stances, and quite small in others. As noted previously
(3], differences in L from valleys to peaks are still large
relative to the Riemannian correction terms and relative
to differential spatial-temporal contributions, thereby
permitting this simpler analysis. However, values of 7L
at maxima separating the far minima may be greater than
1, thereby yielding a very large ¢,,, typical of many physi-
cal systems undergoing hysteresis [3]. Relaxation times
t, about this stationary state are estimated by |g%|™!
[47], and are on the order of 7. For changes AZ in synap-
tic parameters Z={Aj‘,‘c,Bji,Vj,vjk,nﬁjk,N‘G} that tran-
spire within a At of several tenths of a second to seconds,
e.g., during typical attention spans, hysteresis is more
probable than simple jumps between minima if the fol-
lowing inequalities are satisfied.
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To address the issue of limited capacity of STM, it is
reasonable to require that within time spans of tenths of a
second to tens of seconds, simple jumps among minima
are more probable than hysteresis. This permits all mini-
ma to be readily accessible during STM duration, in any
ordering [29], at least more so than if hysteresis were
more probable. In agreement with this empirical
requirement, it is found that T[L({(M)) )
—L({M)),)]~0.01-0.03 for these models using empir-
ical values for synaptic parameters. Then for
I7L gg 1 ~10773, t,, ~107-1007, on the order of several
tenths of a second to a second. Use of the full Feynman
Lagrangian L increases t,, slightly. For these relatively
short 7,, the second inequality above is violated, and sim-
ple jumps are more probable than hysteresis, as required
for STM.

Under conditions of serial processing, the deeper val-
leys of L representing the more likely firing states will be
occupied first. In all cases considered here, some valleys
are deeper than the others. This implies that the last
several items in STM should be harder to encode (learn)
and retain, with the possible exception of the last one or
two items, which represent the most recent shifting of
firing patterns M € to these minima (M )), of L. These
conclusions are consistent with empirical observations,
and are obtained independent of any other rehearsal
mechanisms that may exist.

Calculations in these models establish that the prefac-
tor most often is ~7. However, points close to the
corners M °=+(N% N’) have much more rapid varia-
tions. Therefore, minima at these corners, even when
TL({(M)),)~0.01-0.03, because of their sharp peaks,
typically have #,, on the order of tens of seconds to jump
to minima clustered on the diagonal. This is within the
range where hysteresis is more probable for these mini-
ma. Therefore, minima at the corners of M ¢ space most

likely do not contribute to STM, bringing the number of
J
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available minima down to 712 as empirically observed.

These previous results were obtained by looking at the
space-time independent ‘‘uniform” Lagrangian and the
Fokker-Planck associated with this Lagrangian in the
continuous M ¢ limit. The present study does not require
any of these assumptions, but deals directly with the orig-
inally derived mesoscopic propagator.

IV. PATH-INTEGRAL CALCULATION
OF EVOLUTION OF STM

A. Path-integral algorithm

The path-integral C-language code, PATHINT,
developed by the author calculates the long-time proba-
bility distribution from the Lagrangian, e.g., as fit by the
ASA code. A robust and accurate histogram-based
(non—-Monte Carlo) path-integral algorithm to calculate
the long-time probability distribution has been developed
to handle nonlinear Lagrangians [48-50], which was ex-
tended to two-dimensional problems [51]. The code used
here was developed for use in arbitrary dimensions, with
additional code to handle general Neumann and Dirichlet
conditions, as well as the possibility of including time-
dependent potentials, drifts, and diffusions. Such calcula-
tions are useful for many kinds of financial instruments
[52,53]. Monte Carlo algorithms for path integrals are
well known to have extreme difficulty in evolving non-
linear systems with multiple optima [54].

The histogram procedure recognizes that the distribu-
tion can be numerically approximated to a high degree of
accuracy as sum of rectangles at points M; of height P,
and width AM;. For convenience, just consider a one-
dimensional system. The above path-integral representa-
tion can be rewritten, for each of its intermediate in-
tegrals, as

P(M;t+An= [ dM'[g)/*2mAt)”2exp(—L,At)]P(M';1)

= [ dM'G(M, M';AP(M'51)

N
P(M;t)= 3 m(M—M;)P;(t),

i=1

1, (M,—1AM, )<M<(M,+1AM,)

(M —M,)=

0, otherwise.

This yields

P (t+At)=T;(At)P;(1),

) M,+AM, /2

T, (At)=——-
s A=y TAM

M [
M, —AM; /2 N

x\lj+AMj/2

1

/2

dM'G(M,M'";At) . (18)
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T}; is a banded matrix representing the Gaussian nature
of the short-time probability centered about the (possibly
time-dependent) drift.

This histogram procedure has been extended to two di-
mensions, i.e., using a matrix Ty, [51]. Explicit depen-
dence of L on time ¢ also can be included without compli-
cations. Care must be used in developing the mesh in
AMC, which is strongly dependent on the diagonal ele-
ments of the diffusion matrix, e.g.,

AM S~ (Atg!llcly1/2 (19)

Presently, this constrains the dependence of the covari-
ance of each variable to be a (nonlinear) function of that
variable, in order to present a straightforward rectangu-
lar underlying mesh.

Since integration is inherently a smoothing process
[52], fitting data with the short-time probability distribu-
tion, effectively using an integral over this epoch, permits
the use of coarser meshes than the corresponding sto-
chastic differential equation. For example, the coarser
resolution is appropriate, typically required, for numeri-
cal solution of the time-dependent path integral. By con-
sidering the contributions to the first and second mo-
ments conditions on the time and variable meshes can be
derived [148]. The time slice essentially is determined by
0=<L , ', where L, is the uniform Lagrangian, respect-
ing ranges giving the most important contributions to the
probability distribution P. Thus, 8 is roughly measured
by the diffusion divided by the square of the drift.

The code here was tested against the test problems
given in previous one-dimensional systems [48,49], and it
was established that the method of images for both Diri-
chlet and Neumann boundary conditions is as accurate as
boundary element methods for the systems investigated.
Two-dimensional runs were tested by using cross prod-
ucts of one-dimensional examples whose analytic solu-
tions are known.

B. PATHINT applied to SMNI

The accuracy of this histogram path-integral algorithm
relies heavily on Eq. (19), i.e., being able to use the diago-
nal diffusions to select a proper rectangular mesh. How-
ever, for the SMNI problem, both g £ and g are highly
nonlinear in both M£ and M/, preventing a rectangular
mesh from being developed in M € space.

To confront this problem, use is made of the previous
observations [4,6], that the most likely states of the ‘“‘cen-
tered” systems lie along diagonals in M ¢ space, a line
determined by the numerator of the threshold factor,
essentially

AEME— 4EM'=~0, (20)

where for neocortex Af is on the order of 4f. Along
this line, for a ‘“‘centered” system, the threshold factor
FE=0, and L is a minimum. However, looking at L 1 in
F! the numerator ( AfME— A}/M7) is typically small only
for small M, since for neocortex 4} << Af.

General transformations of variables must be treated
with some care [22,42]. In the Stratonovich midpoint
representation, the invariance of multiplicative-noise

Gaussian Markovian systems is made explicit, inducing a
Riemannian geometry with the metric being the inverse
diffusion matrix. For example, in the path-integral repre-
sentation, the conditional probability density is written as

P= [ - [ DMexp

’

u
— 3 AtLp,
s=0

u o
DM =gy *(2mAt)"®2 [] g, II 2mAt)™'2dM,
s=1 G=1

NG
[aMl— 3 aMS , ME=MF , MS, =M,

=1
I_Jpzé(dMG/dz—hG)gGG'(dMG'/dt—h ¢
+%hG;G+R /6—V ’

(-++) —9C---)

G amS
hG=gG_%g—1/2(gl/2gGG')yG' ,
gGG,_:(gGG')—*l ,

&[ME(7,), T, ]=det(gse ) » &, =g, M .51,
1O G=h%+TEhC=g 1 /2g 12 0) |

Tl =g"JK,L1=¢g" (g x +8kr.s —8x.L) »
R=g’'R;; =g""¢"*Rpy; ,

Rpxr = %(gFK,JL —8Jk,FL —8FLJk T8IL FK )
+eaun( TH Tl —TH T, (21)

where R is the Riemannian curvature, and we also have
explicitly noted the discretization in the mesh of M by
t. If M is a field, e.g., also dependent on a spatial variable
x discretized by v, then the variables M is increased to
MS, e.g., as we have prescribed for the macroscopic neo-
cortex. The term R /6 in Ly includes a contribution of
R /12 from the WKB approximation to the same order of
(Ar)*2[22].

A prepoint discretization for the same probability dis-
tribution P gives a much simpler algebraic form, e.g., as
given in Eq. (6) for SMNI. Under a general transforma-
tion M'=M'(M ), the Fokker-Planck equation,

P
%7=%<gG”P>,GH—<gGP>,G+VP ;
(+++)g=a(---)/aMC, (22)
becomes
oP’
S — 18P ) n—(g"°P) g+ VP,

(++-)g=8(-")/aM'C,

ng___ aM,GgH+_l_gHJ aZMlG
oMH ® aMHyMY
GH_ OM'® aM'® g’k
oM’ amXk

’
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|| oM’
dM M HdM ,
PdM =P'dM' . (23)

Now, in the context of this paper, to prepare a mesh
determined primarily on values of the diffusions along the
diagonal slope q,

a="1 24)
a transformation is used from MS=(MEM!) to

M’Hz(M,X,M,Y),
1

M’X:W(ME—(JMI),

M’Yzm(ME-f—aM’) :

ME= a;“)T/;(M'Y+M'X) ,

M’=W(M'Y—M'X) : 25)
preserving

am= || 2 idMZdM. 6)

This defines the drifts,

’X— 1 A
1 gt g
8 T g8 %

'Y E I
g ——W(g +ag’), 27

and the diffusions,

1 E
1XX — 1YY E. 2,11
= _1 + R
g'tt=g Za(g a‘g™)

’ ’ 1

Xy___g YX_Z(gEE-ang) . (28)

Creating this rectangular grid in M’ space, encompass-
ing the boundaries of M space, also enlarges the range,
e.g., from 161X61 to 155.56X155.56 for a=1.
Reflecting boundary conditions were imposed along the
“diagonal” four walls of M space in M’ space, and the
values of the contributions to the Green’s function from
poinztos outside these walls were set to a small number,
107,

After the numerical calculations in M’ space, PATHINT
prints out values in the original physical M space. A
bandwidth of 5 AM ;’s was used, as this gave essentially
the same results as three and four such units on each side
of the diagonal terms for both M’¥ and M’Y. (The small-
er bands gave runs much faster using much smaller ma-
trices, but the larger band was used in the interest of er-
ring on the side of caution.) The mesh for each M’ vari-
able was determined by evaluating its respective diagonal
diffusion along its axis. Experience with the BC’ and EC’
models showed that coarser calculations with Az =1 gave
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sufficiently different answers than with Ar=0.57, so that
only these latter models are reported here.

C. PATHINT results from SMNI STM calculation

The results of these explicit calculations corroborate
the relatively intuitively derived results obtained previ-
ously [4,6]. An initial 8-function disturbance at M ¢=0
excites all modes in M ¢ space. The normalization of the
discrete probability density is kept fixed. If a distribution
of firings were to be presented to the system, this initial
state would be filtered and processed according to the set
of attractors defined by the Lagrangian.

Figures 1(a) and 1(b) show the evolution of the BC’
model at 0.05 and 0.5 sec, at 5 7 and 50 7. The slope
a=1.0. The results are at least consistent with that in-
tuited by the earlier SMNI studies [4,6], in that there are
close to ten peaks that can be considered candidates to
store STM. Plots were prepared using GNUPLOT [55]. As
discussed above, the large peaks in the distributions in
the corners are not candidates for STM, as memories

Path Integral Calculation of SMNI STM

‘BCP_10" ——
0.00473 ----
0.00378 - -
0.00284 - -
0.00189 ---
( 0.000946 -----
P \a )

0.006 -

0.005

0.004

0.003

0.002
0.001

Path Integral Calculation of SMNI STM

BCP_100' —
00167
00134
( b ) 0.01 ---
0.00668
0.025R 000334 ---
0.02 - {
0015
0.01
0.005

50

FIG. 1. Model BC'. (a) is the evolution at 5 7. (b) is the evo-
lution at 50 7.
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Path Integral Calculation of SMNI STM

‘ECP_10' —

(a) 0.0104 -----

0.00835 -

0.00626 -~

0.00417 -

P 0.00209 -~
0015~

e

0.01

0.005

0.00409 -----

100205 -~
0.015R 0

0.01

0.005

FIG. 2. Model EC'. (a) is the evolution at 5 7. (b) is the evo-
lution at 50 7.

trapped in theses states are not accessible from other lo-
cal peaks with time scales of 1/10 sec. Furthermore, it
can be assumed that these models have not taken into ac-
count other biological mechanisms in normal neocortex
that tend to keep firings from extremes of all firing and all
not firing.

To represent a macrocolumnar-averaged minicolumn
within a time of epoch 7, i.e, a “mesocolumn,” with 80
excitatory neurons and 30 inhibitory neurons, a transition
matrix would contain 80X 30X 80X 30~ 6 X 10° elements.
Using the above algorithm, for the balanced case, 403 929
elements in the larger M’ space were needed.

One-hundred foldings were considered sufficient to ob-
serve systematics of response to a 8-function disturbance
at M®=0. On the author’s Sun SPARCstation-2, the cal-
culation of a transition matrix took about 3 CPU min,
and about 6 sec for each subsequent time folding.

Figures 2(a) and 2(b) show the evolution of the EC’
model at 0.05 and 0.5 sec. The slope a =0.5. The num-
ber of peaks that can be considered candidates for STM
storage are much less than for the BC' model. A matrix
of 505 800 elements was required for this calculation.
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Figures 3(a) and 3(b) show the evolution of the IC’
model at 0.05 and 0.5 sec. The slope a =2.0. Similar to
the EC’' model, the number of peaks that can be con-
sidered candidates for STM storage are less than for the
BC’' model, although more than for the EC' model. A
small diffusion in the corners required smaller meshes
there, resulting in larger matrix of 1850330 elements.
This run was performed on a SPARCstation-10MP.

Figures 4(a) and 4(b) show the evolution of the
BC'__ VIS model, the BC' model for a visual cortex, at
0.05 and 0.5 sec. The slope @ =0.5 as in the BC' model,
but the number of neurons/minicolumn is increased from
(NE,NT)=(80,30) to (NE,NT)=(160,60). The larger
number of neuronal states resulted in a matrix of
1479993 elements required for this calculation. This run
was performed on a SPARCstation-10MP.

It is clear that models BC’' and BC'__ VIS support mul-
tiple stable states in the interior physical firing M ¢ space
for time scales of a few tenths of a second. Models EC’
and IC’' do not possess these attributes. This is in accord
with earlier intuitions obtained by examining stability of
the static Lagrangian [4,6].

Figures 5(a) and 5(b) examine the interior of M ¢ space

Path Integral Calculation of SMNI STM

ICP_10' —
(a) 0.00939 -+
0.00751 -~

0.00564 - - -

0.00376 - -

0.00188 -~

0.015 -
P
0.01} * i

0.005

50

50

Path Integral Calculation of SMNI STM

( b ) ‘ICP_100" —
0.0115 -----
0.0092 -
0.0069 ---
0.0046
0.0023
P
0.015 -
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50
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FIG. 3. Model IC'. (a) is the evolution at 5 7. (b) is the evo-
lution at 50 .
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Path Integral Calculation of SMN! STM

‘BCP_VIS_10' ——

_1
0.00237 -----

Path Integral Calculation of SMNI STM

0.00462 -----

a little closer by applying a cutoff to all points of the
probability density higher than 0.0001, for models BC’
and BC'__VIS. Model BC'_ VIS demonstrates the clus-
tering effect noted earlier [4,6], which is easiest seen in
the contour maps at the base of Fig. 5(b). IL.e., all likely
states cannot be as readily accessed in model BC' VIS
as in model BC’ within time scales of 1/10 sec.

These calculations must be considered as a starting
point for future investigations. For example, before these
can be scrutinized to calculate accurate times of first pas-
sage, etc., further development of PATHINT should be ex-
plored to handle the complications of multivariate non-
linear diffusions. However, these calculations do explicit-
ly demonstrate the stability of multiple memory states
within experimentally observed time epochs. There is no
suggestion at all from these calculations that there is any
marked sensitivity to initial conditions of neuronal firing
states, but there is a marked sensitivity to the synaptic
parameters defining the three classes of models presented
here.

V. CONCLUSION

When approaching a system at a given scale, science
typically requires that there is at least some understand-
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FIG. 4. Model BC'__ VIS. (a) is the evolu-
tion at 5 7. (b) is the evolution at 50 7.

ing of this scale from some underlying finer-grained
scales. The natural scale underlying macroscopic neo-
cortical phenomena at the level of EEG is at the colum-
nar scales. Then, the SMNI theory must be tested here
as well, and STM is a natural phenomena to use for such
tests. SMNI cannot do any justice at all to smaller scales,
but it seems that artificial neural networks can barely ap-
proach the columnar scales as well. For example, just to
keep track of the states of a minicolumn of only 100
grossly simplified neurons would require an accounting of
2110 ~10% states; an accounting of the transition matrix
of these states would require the square of this astronomi-
cal number. Even an SMNI statistical aggregation, keep-
ing vital nonlinear dynamics derived at the finer neuronal
level, into combinations of 80 excitatory and 30 inhibito-
ry states would require a transition matrix of ~6X10°.
All these estimates increase by a factor of 16 for a visual
cortex with 220 neurons per minicolumn. The use of
PATHINT greatly reduces the number of elements required
for an accurate calculation of the evolution of the SMNI
mesoscopic system, and such calculations are given here.
There are several factors in the SMNI development
that support optimism for extracting more signal from
noise in EEG data than is currently possible. While
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Path Integral Calculation of SMNI STM
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Path Integral Calculation of SMNI STM
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0.0001 -
9e-05 |-
8e-05 |-
7e-05 |+
6e-05 -
5e-05 -
4e-05 -
3¢-05 |-

2e-05
1e-05

-150

SMNI is most logically tested using data collected from
brain surface recordings, the necessity and utility of per-
forming noninvasive EEG scalp recordings argues strong-
ly for further developing SMNI to extract better signal
out of noise from scalp recordings.

(a) In the course of a logical, nonlinear, stochastic de-
velopment of aggregating neuronal and synaptic interac-
tions to larger and larger scales, opportunities are taken
to use techniques of mathematical physics to overcome
several technical hurdles. Paradigms and metaphors
from other disciplines do not substitute for logical SMNI
development.

(b) The SMNI theoretical model has independent valid-
ity in describing EEG dispersion relations, systematics of
short-term memory, velocities of propagation of informa-
tion across neocortical fields, recency versus primacy
effects, etc. Fits of such models to data should do better
in extracting signal from noise than ad hoc phenomeno-
logical models.

(c) ASA enables the fitting of quite arbitrary nonlinear
stochastic models to such data as presented by EEG sys-
tems. This means that functional dependences in the
noise itself (the diffusion matrix) as well as the functional
dependences in the driving terms (the drift vector) can be
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FIG. 5. Examination of interiors of models
BC' and BC'__VIS. Probability densities are
cut off for values higher than 0.0001 at time 50
7. (a) Model BC'. (b) Model BC'__VIS.

fit directly. Once fitted, PATHINT can evolve the system,
testing long-time correlations between the model(s) and
the data, as well as serving to predict events.

(d) SMNI proposes that models to be fitted to data in-
clude models of activity under each electrode, e.g., due to
short-ranged neuronal fibers, as well as models of activity
across electrodes, e.g., due to long-ranged fibers. These
influences can be disentangled by SMNI fits.

(e) Yet to explore are the ramifications of using the de-
rived (not hypothesized) Riemannian metric induced by
multivariate Fokker-Plank-type systems. This seems to
form a natural invariant measure of information, that
could or should be used to explore flows of information
between neocortical regions.

(f) The SMNI approach shows how to “renormalize”
the spatial activity to get a model that more closely
matches the experimental situation of scalp measure-
ment, wherein there is attenuation of ranges of wave
numbers [45].

(g) The MNN parallel algorithm may offer real-time
processing of nonlinear modeling and fitting of EEG data
for clinical use. Regional EEG data can be interpreted as
mechanisms occurring at the minicolumnar scales, scales
which overlap with other work being performed by
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ANN.

(h) This PATHINT code is an important partner to the
ASA code. ASA has made it possible to perform fits of
complex nonlinear SMNI distributions to EEG data [13].
Now, using ASA, the parameters of the fitted SMNI dis-
tribution can be used to determine a distribution of
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firings in a short initial time epoch of EEG. Then,
PATHINT can be used to predict the evolution of the sys-
tem, possibly to predict oncoming states, e.g., epileptic
seizures of patients baselined to an SMNI fitted distribu-
tion.
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FIG. 1. Model BC'. (a) is the evolution at 5 7. (b) is the evo-
lution at 50 7.
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FIG. 2. Model EC'. (a) is the evolution at 5 7. (b) is the evo-
lution at 50 7.
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FIG. 3. Model IC'. (a) is the evolution at 5 7. (b) is the evo-
lution at 50 7.
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tion at 5 7. (b) is the evolution at 50 7.



Path Integral Calculation of SMNI STM

( a ) ‘BCP_100_.0001" —
8.29e-05 -+
6.63e-05 -
497e-05 ---
3.32e-05 ---
1.66e-05 - -

B
e e
=2

s Y o T O

ST
S T T E e
e e T T AL Tl
T e
= s
e

Path Integral Calculation of SMNI STM

BCP VIS 1000001 — FIG. 5. Examination of interiors of models

(b) BoPYIS g.'gge—gg i BC’ and BC'__ VIS. Probability densities are

oje08 = cut off for values higher than 0.0001 at time 50

" Toaeos - 7. (2) Model BC'. (b) Model BC'__VIS.
0.0001
9e-05
8e-05 -
7e-05
6e-05
5e-05
4e-05
3e-05
2e-05
1e-05
Q

-150




